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ON THE SHELL EQUATIONS IN COMPLEX T'ORi*

J. Lyell Sanders, Jr.

Harvard University, Cambridge, Messachusetts

INTRODUCTION

This Faper is concerned with the protlem of formulating the general
-equations of linear thin shell theory .in terms of complex combinations
of dependent variables in such a way as to arrive at a fourth order system
of partial differential equations. Consideration is limited to elastic,
isotropic, homogeneous shells with edge loads only.

Novozhilov was the first to formulate such a system of equations
for 5 shell with an arbitrary middle surface subjected to arbitrarily ‘;
distributed loads. A full account of his théory is given in [1]. A history '
of the problem and survey of developments up to 1962 was given by Novozhilov
in [2]; therefore, no such survey will be attempted here. Further develop-
ments of the Novozhilov theory, principally with respect to the "displace- i
ment" form of the equations, boundary conditions, and variational principles
are contained in a recently published book by Chernykh ([3]. Related results
céncerned with extensions of the theory to include effects of anisotropy,
inhomogeneity, and thermal strains have been obtained by Lib;escu and by

Visarion and Stanescu in [4], [5], and other papers. 1In the author's under-
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standing, these extensions lead to a system of equations of a mixed type
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which contain the operations of partfal differentiation and the taking of
In general the "conjugate terms'" are not negligible

complex conjugates.
and cannot be eliminated without raising the "order" of the system above
four.
The remarkable symmetry in the complete system of shell equations
(including stress-stress function relations) discovered by Goldenveizewr
and called the static~geometric analogy leads to an almost obvious complex
formulation of the equations in the case of vanishing Poisson's ratio
“(v=0), In the caser v # 0, difficulties arise. Novozhilov, in effect,
derived approximate equilibrium and compatibility equations.for which the
difficulty is avoided. The validity of the approximate equations is not easy
to prove in general, although considerable thought and effort has been devoted
to establishing their correctness. As far as fhis author is aware, the
validity of the equations has not yet been definitely disproved in any parti-
cular case. Chernykh derived the same system of equations by a different
method. He first arrived at a "mixed" system (of the type noted previously)
and then obtained equations (through several transformations) in-which the
conjugate terms appear multiplied by a small parameter; these terms
were dropped at each stage of the ctransforma‘ions. However, it is extremely
difficult to justify the dropping of apparently small terms in a system of
partial differential equations.

In the present paper the equations of shell theory are obtained in
complex form (free of conjugate terms) by a mefhod which avoids the necessity
of approximating the equilibrium and compatibility equations or any of the
equations except the constitutive relations. This is done at the expense of

introducing an auxiliary set of partial differential equations for certain
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"error terms" in the constitutive relations. The order cof magnitude of the
error terms does not exceed thé order of magnitvde of the errors inherent
in the constftutive relations due to the fundamental hypotheses of thin-
shell theory. Solution of this set of shell equations divides into two
problems: 1. the solution of a determinate fourth order system of equations
aimilar to the Novozhilov equations, but with a few more terms, and II, the
solutiqn of a set of equations identical in form to the non-homogeneous
equilibrium equations for the error terms previously mentioned. |
Tor general cflinders and for shells of revolution, Problem I is
reduced (in two ways) to the solution of a single fourth order parti.l dif-
ferential equation i; a scalar unknown. An alternative form of Problem II

-1s derived and a complete solution of Problem II without quadratures is

obtained for spheres and éenetal cylinders.

FUNDAMENTAL EQUATIONS IN DIMENSIONLESS FORM
Let L be a reference length, the length over which significant
chanzes in the dependent variables occur, sometimes called a wave length. -
Let R be a reference radius of curvature,' ¢ a reference stress, ard h.
the (constant) shell thickness, Let the equation of the middle surface

of the shell be
=t
it | za \ =0
where x~ and § have dimensions of length, and a change in & of O(R)

corresponds to a distance of O(R) . Introduce the following dimensionless

variables:
x Rx 8ap Bag (first fundamental form)
o - a g " " .
£ LE | RbaB - buB (second



A few of the familiar equations of surfaces in dimensionless form

are as follows
2 « 8 i i
I r =R
ds gucdﬁ d§ x,a b ,B L -
i = 1Y i i - _
n . ba X .y X ,a8 fu baB n

i —

where ni is the unit normal to the surface, baB , the second funda-
mental form, differs in sign from the usual definition, and a coama
denotes covariant differentiation. The dimensionless parameters R  and

M aré defined as follows

2 ’ .
p= %E vY12(1 - v2) 8 h .

®Az(1 - VD)

Dimensionless stress and strain measures, displacements and stress functions

e
(without a tilqA) are related to the dimensional variables as follows

‘N 5 4
‘haB OhNoB EaB E EuB
2
= ohlL iy oRu
M= — M K, =—FK
af uR TaB aB EL2 ufB
© el S
« E a xg uR Xa
w = ES’E—R w y = OhLzlP .

Two special notations which permit the shell equations to be written

in a more compact form are introduced next. Define a tensor BaB in terms

of baB as follows /

' 1 Y Y
B = =
B 2(euY bB + EBY ba)
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where €aB is the usual permutation temsor. For ary second order tensor




define a "btar" operation as follows

- ,rlu z A

TaB = cuACBu Bag TA - Tﬁa
Note that ? = T ™ w 'l‘m g .= B,=-5B Hereafter a
aB aB ' “a a * Bqg Bag * “us a’

bar over a second order tensor will always denote this operation.

The following field equations of linear thin shell theory are taken from
(61, [7), (8] and put in dimensionless form.
Strain-displacement relations

1 .
EuB Z(Ua,ﬁ* uB,a)+ ubmB w

1
K 2(¢a,8+ °B,a)+ BB Y.

aB
y (1)
- ¢u --<w,a+8ba‘fy
1 aB
oM 2 € u‘S,u
Stress-stress function relations
= 1
- 1
N(:B = - Z(Bu,e + eB,a) -8 Bf:zBn
. y (2)
en --‘l"u+8 baxy
1l aB
a 2 € XB,a
Equilibrium equations
af a 'YB - _1_ af MYG -
N ,B+BbYM,828c (Byc ).B .0 .
' (&)
ap ad
M ,af v baB N 0 .
Compatibility equations
a8 a =vB 1, aB =v$ -
K88 By gt 28 (gl g=0
(4)
B 728 .
. E ,aB +u baB K 0



Constitutive relations

y
gaB NY

: P
Mg ™~ Q=K +gK

In the shell theory set down here the tensor measures of stress and strain

E

o8 " T (1 + V)NGB +

are symmetric. The similarity in form between pairs of equations is, of
course, a manifestation. of the static-geometric analogy.
The reference length L appearing in the parameter u and elsewhere

is meant to be chosen in such a way that differentiation does not change

the order of magnitude of any of the fundamental variables NGB, w etc.

In some cases (notably for certain solutions of the equations of cylindrical
shells) the variables change more rapidly in one direction than in another.

In such a case L should be the shorter of the two "wavelengths" so that

differentiation will not increase the order of magnitude of a variable.

8

It seems unlikely that the variables N° s W etc., can change much less

rapidly than the surface variables, b etc.; 1in any case it will

a8 * Pas
generally be assumed that differentiation of these surface variables does not
increase their order of magnitude. The reference stress ¢ can be chosen

g or MaB

such that at least one of the components of N is about unity
(over some region of the middle surface of dimension L , usually) and none

of the components are much larger than unity.

COMPLEX COMBINATIONS

Let yro8 R ﬂ; etc., be some solution to the shell equations and
let N''°F , u;' etc., be some other unrelated solution. Let

NGB - NOQB N" GB

+ 1

and similarly for all other variables, The Eqs.(l) to (5), now in terms of

(5)

(6)
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complex-valued variables, hold as they stand. Of course, nothing has been
gained by this operation. However, if some relation can be introduced between
the primed and double~primed solutions, then there 1is the possibilily of some
gain. To see how this might be so, consider the case of Poisson's ratio v

equal to zero, and introduce the additional equation

NaB = i Rﬁe . (7)
From (5) and (7) iollows
M8 . -y FOf (8)

and one can ogviou?ly set w = {y and Uy 1 Xy ¢ The number of field
;quations 1 toAS) is cut in half because the equations become identical by
pairs, and the order of the system is reduced from eight to four. By separating
real and imaginary parts in Eq.(7), one finds

(1] - v Py ' Pl = - |
N = Xag 3 Kgg - Nag

80

‘N, = N'_ +4iK'
s}

af aB 8

v e K - '
KaB KaB 1 NaB’

and similarly for other quantities. Thus, the introduction of the relation (7)
is equivalent to the introduction of dependent variables which are complex
combinations of quantities which are static-geometric analogs of each other.
Tte shell equations were reduced in this way by Novozhilov in [1)., The fact
that the additional reiation (7) does not result in an insoluble overdetermina-
tion of the system of shell'equations 18 obviously due to the static-geometric
analogy (which suggests iust such a complex combination of the vgriables). An
immediate difficulty is that v = 0 1is not generally a useful approximation.
Suppose that (7) is retained in the case v # 0 , then from (5) there

follows (instead of (8)) \\\

MaB - -1 EGB + 2v KGB . (9)
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One can easily verify that the system of Eqs.(1l) to (5) plus the relations
(7) and (9) 1is incomsistent. However, consider ..e Vlosov approximate

equations which are obtained from (1) to (5) by setting B = 0 (to which

af —

should be appended the rule ¢ TY o = 0 ). By (7) the equation
?
NmB g = 0 becomes 1 EQS g™ 0 which 1s true. The equation
9 14
‘ af af
M saf ubaBN 0
becomes, by (7) and (9)
-8 —afB =af
iE ,08 + 2v K ,a8 iy buﬁ K 0

which is the same as

a8 zoB

E ,aB + ubuB K 0
since Epﬁ =0,

,aB

Thus the compatibility equations are equivalent to the equilibrium
equations. The relations ¢ = - 1 w and Xg = - iu; - 2v w,a between
complex stress functions and complex displacements also holds, The complete
system of Vlosov equations can thus be put in complex form with no further
approximations and obviously half of the equations and variables could be
discarded to reduce the order of the system by half. The reduction to a
single fourth order equation in w or ¢ is well known.

In the case of a spherical shell (buB = Bug° BuB = 0) the introduction

of a slight modification to the relation (7) leads to a similar reduction

of the exact system of equations. Put

NaB = {2 KaB (10)
where 2 .
Vel-286vVvAr 0 . 2
Since' 8 1s small there 1is a root A % 1 . The relation (9) 1s replaced by §
Z
- - 4
EcB s {2 MuB -2L A v KuB (11) %




For A a root of the above quadratic equation, one can ezsily verlify that
the equilibrium and compatibility equations are equivalent to each other,

and moreover the following relations hold

w=1i)y{ s Xy = i lua- 2v w;a

Without much difficulty the system of equations can be reduced to a single
fourth order equation similar to ore derived by Koiter [9]. Unfortunately,
in the case of a general shell; (10) does not lead to a similar result
for any vaiue of ) .

Novozhilov [1) in effect derives approximate sets of equilibrium and
compatibility equations for which the introduction of (7) does not lead to
contradictions. Novozhilov, of coursé, bases his derivations on his set of
shell equations which differ (but in no easential way) from (1) to (4).

In his derivation of approximate equations for the complex theory, the
equation of moment equilibrium about the normal to the middle surface is
not enforced. Such an approximation is known to lead to difficulties with
respect to accuracy in some cases, notably in the case of helicoiial shells
(10},{21],{12],{13]. In any case, some approximations in the equilibrium
and compatibility equations are necessary if one wishes to put the shell
equations in complex form and retain relation (7). However, in {13] Koiter
has shown that the exact equilibrium and compatibility equations cannot, in
general, be simplified. That is to say, no tera In them is always negligible.
in all possible cases. Since the Novozhilov equations have been tested in
practice and subjected to careful study, there seems to be little doubt

that they are sufficiently accurate for most practical cases, at least for
general cylinders and shells of revolution. There does, however, seem to be

\
room for reasonable doubt that they are accurate (to within the usual limits
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of shell theory) in all cases, and in particular for certain problems of
the helicoidal shell.

In view of the foregoing it is evident that the relation (7) must be
nearly the correct one to introduce 1f one wishes to put the shell equations
in complex form without introducing essential errors, if indeed this is
possible. 1In the present paper a modification of (7) is introduced which
leads to the desired result without approximati.n of the equilibrium or

compatibility equations.

FORMULATION OF COMPLEX EQUATIONS IN THE GENER/ L. CASE
—ng
Since N®- 1K 1is expected to be small (and for other reasons)
it is convenient to introduce the "double" complex combinations of variables

given below

PaB - NaB 41 Eaﬁ gaB - NaB -1 igB
(12)
QaB - 8. ¢ F°8 6&3 =B 4+ B .

(Because of the way in which the stress and strain measures were made

8 af

dimensionless P%" and QuB must be 0O(1). P

B

= 0(1) means that at least

one of the components of P°® has a real or imaginary part which is abou  unity

and no component has a real or imaginary part much gréatet than unity. In

8

general the real and imaginary parts of P* can differ in order of magnitude.

In equation (13) below an apparently small term cannot be dropped unless this
term is negligible in both the real and imaginary parts of the equation. Imn the

afB

Vliasov case the real and imaginary parts of P  and (f’B are u{l) and the R

terms can be dropped.)

The (complex) equilibrium and compatibility equations (3) and (4) combine

\\
together to give -
af a Y8 _ 1, aB vé -
P .8 + 8 bY Q 8 78 ¢ (BVGQ ),8 0 (13}
ap at _
Q" ag " ¥ b ?P =0

SRS ¢ SBCAAR | el R i L 4 e
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*af *aB
and the same pair of equations in terms of B and Q » hereafter
referred to as (13)* . Also define
H=1&-iw X =y -1u
3 (. 3 (1] T oa (14)
¢ =0 —-1¢ - z = g -1iw
[\ a a

along with W* = ¢ + i w , etc.
The(cémplex) stress-stress function relations (2) and strain displace-

ment relations (1) combine in the following form

_ 1 N
P, =-=(® +¢ )-BB _z
ab 2 ' a,8 6,a af as)
o= 2 . +% )+ub u
af 2 “a,B B,a af
where . -
¢ =-W _+BDb'X
a ,a a
and 1l aB
z 2 € xB,u
and the same equations with stars.
In place of the constitutive relations (5) introduce the following
modified relations -
* : :
P°F =g vr®h : (16)
. .
8 e ivr*® iyt (17
Q*t =178 (18)
in which R’s and SmB are, for the present,arbitrary symmetric tensors

B

except for the restriction R* = 0(1) or 0(1/u) , whichever is greater,

8

and the same for S™° . If, in (16) to (18) one sets B.- 0 and sclves

PPN,

for E;B in terms of NaB and Maﬁ in terms of /i;B the results are exactly

the constitutive relations (5). Equation (16) becomes equation (7). With
B¥ 0 the constitutive relations implied by (16) to (18) are (5) with

error terms of O(B8,8/u) . Novozhilov [1] and Koiter [6] have shown that

it is permissible to introduce absolute errors of this order in the

Wbt it
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(dimensionless) constitutive relations without impairing the accuracy of
the system of shell equations because the constitutive relations already
contain errors of this order from the fundamental assumptions. With B # 0
equation (16) is a modificafion of the relation (7). As will be sho;;,

the temnsors R and Su can be chosen such that the system of shell

aB 8

equations is not overdetermined in an inconsistent marner by the introduction

of one extra i1epsor relation. If eithezr v =0 or B =0 the tensors RuB

and Sa drop out of the relations (16) to (18) and the corresponding system

B
of shell equations is consistent, as has already been shown.

af af ;dB

%o R
Any set of four temnsors P , Q and Q"% which satisfy (13)

and (13)* are equivalent to a solution of the shell equations provided RmB

8 can be found such that (16) to (18) are satisfied with restrictions

B

and Su

on the order of magnitude of R™" and SclB observed. The problem splits

into two parts: problem I, the determination of Paa ;3 problem 1I, the

8 and SGB .

determination of Rc
Problem I. Use equation (18) to eliminate the variable QQB from equations (13).

The result is

p0B a yB af S Y DS { N
; ,B+iBbYP .8 iB b P 5 iBe (bYGP )’B 0 ,
19
a - 2 af _
‘ iPp a8 ~ iv ? - “ch P =0
in which P = Pz and V2P = gaB P aB® To obtain these equations the follow-
?
ing relations hasve been used.
PP pp® p FBL_F p*® .. pof .

aB af af

By obvious manipulations (19) reduces to the following (with 82 terms

-
dropped)-

P 1P - -;— 18e%% (8

véy _
.8 8 P ) 0

Y$ B

(20"

v - ipb ., PP - 18b®Bp ) =0 .
" o Y ,(!

8
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These equations constitute a determinate fourth order system of equations for
the components of the tensor P°f . 1If the last term in each of (20) is
onitted, then these equations are identical in form (but for a different
variable) to the complex shell equations derived by Novozhilov. In certain
cases (to te discussed later) these equations have been reduced to a single
fourth order equation in a scalar variahle.

8

* * _
Problem II. Replace P* and QmB in equations (13)* by their expressions

in terms of R°P , s°® | and P from (16) and (17). The result is

af a yB _ 1, 0B v8 _ 1o pYB 1 aB v4 -
R .8 *tB bY S ,B 2 Be (Byés ),B bY P .8 *'it_ (Byép ),B 0
' 1)
af af, af =
B(S ,a8 B buB Ry -P ,aB 0 N

These equations can be reduced somewhat by the use of the first of equations (20)

with the result

af a . YB 1 afl v$ 1 oB vs
+ - B_,S = - = P
R .8 B bY S 872 Be ( 6. )’B 3 € (BYa )’B
(22)
aB oB af
S ,aB ] buB R i(b P, ),u .

These equations have beea simplified bi the omission of certain 8 and Bz

terms on the right-hand side, but without claiming that these terms are always
B B

e

I

and S* is equivalent

negligible. The solution 6f equations (22) for R®

e w0y

to the determination of a particular solution to the non-homogeneous equili-~

brium equations (regarding PnB as known from the solution of (20)). Since

B

the originél equations were made dimensionless in such a way that p®" is

AR - e

0(1) , there should be a particular solution to the equations (22) with

af

*f ana 5*® o@,1/w) .

&
&
)
3
=

In a later section Problem Il is recast in another form and exact solutions

without quadratures are obtained in the cases of a sphere and a general cylinder,
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FURTHER RESULTS ON PROBLEM I

The equations (20) for I-‘o‘B probably cannot be reduced to a single
fourth order equation in a scalar variable in the general case. In [1T
Novozhilov has reduced the equations for a general cylinder to a single
equation in a variable roughly corresponding to the variable P and the
equations for a shell of revolution to two coupled second-order equations.
Different reductions to a fourth order equation have been made by Koiter [$]
for a sphere and by Simmonds [14] for a cifcular cylinder. In the present

= section equations (20) are reduced to a fourth order equation (in two ways)
for the cases of a geﬁerél cylinder and a shell of revolution (except for a
.sphere). The sphere is treated as a special case. Before proceeding certain

geometrical results are developed.

Geometrical Note

Except in the case of a sphere, any second order tensor on a surface

can be represented in the following form

2 aB , .3

L J\1 8a8 +232 0% 4 L

+ 2208 (23)

where the Ai are scalars. The elimination process to be performed is
based on the representation of ﬁaB in a form similar to this. . A modifi-~
cation of (23), possible for a certain class of shells, leads to somewhat

simpler results, but is in no way essential to the elimination process.

B

The modified form of (23) for P*° 1is as\igl}ows

P8 e %8 4 22§08 4 a3 o8 (26)

1)

in which B e

and %8 = T (baB - pgaB) where p = %-b: is

the mean curvature and where 1t is determined in such a way that

+aB saf aB
5% g=0 and B =0, since 3 -é”'(bs -pﬁs ) the problem is
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the same for eiiher tensor. Consider
™ - 051 = 0P - g™y + 1 =0 . (25)
28 4B B .
Use (b: - pBI)(baB - pguB) = (p2 - K)gBY vhere «x 1is the Gaussian
curvature to obtain
1 Y _ oY -
T,u + 92 i (bu péa)p,y t=0 ., (26)
The condition of integrability of this equation for T 1is
aB 1 Y Y
€ = (b’ - pé =0
[ 2_, (b, - » 0‘)p’Y],B
or
aB Y vy (_P.x Y
€ (b' -pd) = -B =0 . (27) -
o a’\ 2 2
p - x/,8 p = x’B
This condition is satisfied for general cylinders and cones, surfaces of
revolution, and any surface of constant mean curvature. For these cases
o1 Y <Y ;
(log T),a Z_, (ba p&Sm)p’Y . (28)

ForA:eneral cylinders and shells of revolution in lines-of-curvature
coordinates T , p , ¢ etc., are functions of one coordinate only and (28)
is easily integrated. For cylinders ‘T = 1/p , for shells of revolution
T = llr2 /;5—:~; where ¥ 1is the radius of a.parallel circle (R2 sin 6

in the notation of [1] ). A few useful formulas involving GuB etc., are

as follows
* ‘Y - .Y - .
¢ bcy 8 L eay bB BuB
- Iy - .Y - *
¢ ay B8 guB Bu EVB ch
‘0 .Y - °a -
T BuY b8 euB ba 0
where g = tz(pz B

- x) B = 0
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Characteristic Equation in P . Put (see (19) )
o B a . Y8 of 1 af )
= P 4+ i b P -1 b P -1 B P 30
T R N N AL RN R
af 2 af
T i?P ,aB iv P ubaBP (31)
and define
o _ ,a oY of aff 1 af Y$
= - T =P - - 5 B
T T ig bY B igbd P,B 2 ig e ( ) P ),6 (32)
in whiéh certain 82 terms have been omitted. From (31) and (32)
- - - 2 . af _ af
T-1T | 1V P -ub B -8R ) (33)
Now put
PuB - Al gaB + 12 BuB + 13 éaB (34)
in which -
1 1
AT = 2 P
2 _ 1 aB _ ey
A 5 TE(b, P oP) | t35)
3 .1 aB
A 2 T BaBP .
From (32) and (34)
Teg®al 419832 15983 _ipn® v s B, (36)
»B sB 8 B sB

Multiply this equation by ;5: to obtain

Y T = ¢ 587 Al + 8V a2 4 B3~ g Y o%Bp | + 182 2PV () ™hAY
a ’ »8 »B a »8 y8
(37)

The first order term in X3 can now be eliminated by a differentiationm.

*Y *By, L1 2.2 sy . af * By =13

b T = b A s+ VAT - b + 1iBB 8
(T, )’Y (c .é)’y 18(cb, b Pg {Y ig {c[(tc) A ],8},v (38)

The last term in (38) is equal to the. following

By 1 3 3 1.
i BB {rzg( 12; A,s ).v + A [g¢ cmB ]’Y} .

SRR $ 0530 s e s ¢ N

i

sy
o S g b
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The term with A3 P can be eliminated as follows
]
Yt _ ] — P-Y 1 2.2 ' b
b'T ~ iB1g(—=— T = b A + VA% - ig(zb' bP
(T ) - il T @ B(zby %P )
(39)
af, 1 .1 sof, 1 2 .o nBY 1 3
- — - — + ifB — .
1ere (TZL ! ,B),a 18reh (’:2; ’ ’B)aa ifn [C(TC );3] aY)‘“‘

The last term here, the A3 term, cannot in general be eliminated without
one moré differentiation of this equation, and this would lead finally to a
characteristic equation in P of crder highér than the fourth. However,
for general cyiinders and shells of revoluticn, this term vanishes identically
and the elimination of. A3 is complete except for 82 terms which are
certainly negligible. For later reference note here that a variation of (29)
is obtained by multiplying (38) by any O0(B) scalar and adding to (39).
This operation does not reintroduce a A3 term except to 0(82) .

Fgom (33) and (35) it follows'that

2 1l i 2 g af
AT = -~ §1cp P - Yi'TCV P-+—1g(b " P

o R T S e Sy (40)

87,0  2u ,a 2u

Equation (40)is now used to eliminate 12 from (39). The result is the
following

2, -a . o2 . 2B, =& 1 o
Vo (xg7 ,a) + i VO (1gT) + 2ip ba(gT ),6 + 2Butg( 2 T )’u

Tg

Y
(.;T ’Y),u],e

- 1P

z g

caBe 1 Y 1 =
+ BTLb [Tzc (f‘T),a],e

W (rgv?p) + iy 8%B P ) . - 1uv%(repp) + 26u(chY b2PP ] (41)
»a ,8 a 587,y

0B, 1 o saB 1
(ng P o),p - BuTID [tzc (t2eP) 14

+ Butgg

- 18 Ve ) ] - 16105”8042 vp) ] = Lee)
i 20,8 1y »0° B
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The desired characteristic equation is
L(P) = O (42)

valid for cyiinders and shells of revolution. A tentative simplification
of this equation, known to be valid in the case of cylinders from the work
of Novozhilov, Goldenveizer, and Simmonds is obtained by dropping the 8
terms. Frém now on suppose this has been done; the terms can be restored
if further investigation proves it necessary.

The details will not be shown here, but if (38) is multiplied by
an O0(8) scélar and added to (39) this modified equation (39) leads, by
Fhe above process, to a characteristic equation which differs from (42) only
in the Bu terms. Such variability in the Bu terms (not to be mistaken
fér arbitrariness) was encountered by Simmonds [14] whosé paper is enlighten-
ing in this regard.

In the case of a cylinder, if one adds 50(38) to (39), the
characteristic equation becomes
1 .2
P

2.1 _ af _ ip oB =
ViE 9P) + 28u(d P,a),B 5 'b P,aB o . (43)

This equation is the invariant form of Novozhilov's cylinder equation.
It can be obtained by elimination from the equations (20) with the last term
in each of these equations missing. The result seems to be peculiar go the
cylinder. In general, the effect of the last terms in (20) on the characteristic
equation (42) cannot be annulled by any such modification of (39).

‘ Once a solution of the characteristic equation has been found Al
and kz are given directly in terms of P by (35) and (40) (with T = T = 0).
In'order to construct PGB using (34) one must find A3 . This can be done
using (36), to the first order by quadratures, and more accurately by an |

iteration process. Complex displacements Xa and W are then found(if

necessary) by integration of the equations (15) and (18); which must be

e s
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possible since the integrability conditions (20) are satisfied., In practice
the various integrations mentioned here might prove to be difficult. An
alternative formulat;on of Problem I, possibly more convenient for applica-
tion, is developed in the next section.

Alternative Characteristic Equation

8

The expressions (15) for P* and QmB in terms of Xa and W

furnish a complete solution to the "equilibrium” equations (13). If one
P

could find expressions for Xa and W , say in terms of some scalar

—uf

function q’, such that the relation QmB ==~1P? is satisfied, then

one would have a general solution to the equations (20). This is possible

as proved in the following, ) ¢

Let A be a simply connected region of the shell middle surface with

B

boundary C .. Let ?*" be an arbitrary symmetric tensor which is

continuous in A together with its first four covariant derivatives and

B and its first three covariant derivatives vanish on C .

8

such that Pu

Let T and T be defined in terms of P° by (30) and (31). By applica-

tion of Green's theorem

ey ' = - ar v ypo8
{(T X} '+ TW')da { Qg +1 PaB)P da (44)

* in which 628 and 5;8 are related to X& and W' as in equations (15).

Let F(T",T) be the invariant functional of T° and T on the left-hand
side of (4}), and let x; and W' be defined in A in terms of a
function gf/ by the equatioms
{ F(1°,M)Pda = - { (1% X! + T W')da . (45)

One also has

FPda = [ L(P) Pda = [ T(¢) P da (46)
[Fpda=] 10 pta= [ TG

o T T R

iy
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where L is the operator adjoint to L . Now if P satisfies i(f) =0,
then I(ELB + i P;B)Paeda = 0 for arbitrary PQB from (44) to (46). 1t
A

follous that Q;B + i P;B =0 in A . Explicit expressions for Xa and W
obtained by use of (45) and the simplified F are as follows -

¥ = i1gvee (47)

H b"/
8 4 Bu

X =4i%w 4 2ipg(l - i8p)b + —— (Vg (48)

(v} S aJTS 1/?2- }0,0
where

'igy» =0. (49)

These lead (from (15)) to an expression for F;B in terms.of}D .
Problem I in the form QaB = -1 5;8 , regarded as equations for Xa
and W , corresponds to what Novozhilov and Chernykh call '"the equations in

terms of complex displacements.” Such a formulation of the problem has been

exploited by Chernykh in his book [3].

A Characteristic Equation for the Spherical Shell

8~ Bug? BaB = 0 and the preceding

analysis breaks down. However, in this particularly simple case it is easy to

In the case of a sphere ba

derive a characteristic equation. For a sphere the eqﬁations (19) are

a+ 8% 18 % . -0 (50)
sB s B
af 2
P ,a8 - 9P + i;xP. 0 (51)
from which it follows that
v2 P~ 4u(l + 48)P = O . (52)

Note that P satisfies a second order equation in this case. The general

solution to (50) is

af 18 af
P 1+ 18 g P+1U

aff (53)

B =0, 4 i

]
where U .8 . ]
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For a sphere the general solution to (54) is
UaB = 27&8 M ngasy ’ (55
From (53) )
_ 1+ ig, 2
and then from (52) .
9% - 1@ + 1)) 7F 4 2m)p =0 . (57)
This characteristic equation is identical in form to one derived by
Koiter [9] . 1In terms of ¢ one has for ‘;;8
- . 2
(1 - iB)PaB = (1 - 13291as + (1 + iB)Bu gasf-+ i8 P V}ﬁ. (58)

There are obvious possibilities for simplification. The system of equations
for a sphere derived earlier in this paper can be reduced in a similar manner,

and the present system can be reduced in other ways.

FURTHER RESULTS ON PROBLEM IX

*
The complete solution to equations (13)* is given by (15)* for PuB

*0y * *
and Qm'3 in terms of W and xo . Problem II is equivalent to the

x % aB aB
determination of W , Xo , R and $ such that (16) and (17) are
satisfied with order of magnitude restrictions on RPB and S08 as

‘previously stated. If these restrictions are dropped (for the present) a

solution is easily obtained as follows. Write (17) in the form

*
-— -— -— 1 -—
Qug = = 1 VPyg + 1BV S g = Av[5(0, o+ @5 ) + 8B o2+ 85 ] (59)
and compare to (15)% repeated here
T o= o+t yeun b
Qug =28+ %g,o) ¥ by | .
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Equation (59) is satisfied if
* % —
= = 22 - ‘50
Xa i qu, W 0 and SaB BOB z . 50C)
*
Now calculate PaB from (15)*, and use (16) to find
R =-2{Yo) .+ ®¥e) 1-e8 (pz+2BF ) . (61)
aB 2" "o y',B B v ,a aB 2 8

This determination of RhS and saB furnishes an exact particular solution

to the equations {21). The difficulty with it is that the oider~of-magnitude
requirements are not met in general. By choice of scalin PaB end QaB
are 0(1) , and in the usual case ¥ is 0(1) 1. equations (47 and (48).
From (48)

z =1 08y is O(n) and S, =B 2z is C(y)

2 B,a a3 ap

rather than 0(1) as required. This is wnacceptable, in general, because
can be large. The general solution for RhB and SuB is obtazined by adding
the general solution to the homogeneous equations (22) for Rae and scB to

the particular solution, and since these equations have the same form as (15)

a general solution is known. The result is obviously

= - —1 \ ] [

S&B : BuBz + 2(X o8 + XB,a) + qnsw (62)
= - —-—1 ' \ ' ki - 7 1 76"

RGB 2[(@3 + ba‘bY),B + (@8 + bsﬁ{y ),a] BBaB(‘ + pZ + 3 iB Pyﬁ). {63)

y % % * *
The complete expressions for Xa and W used to form %ﬁ and Qus are

= 1\»(@“ + 8 x;) (64)

N Déw
-]

= {Bv W (65)

vwhere X; and W' are arbitrary. Problem II will be solved if X; anc
W' can be found to satisfy the order-of-magnitude requirements on RnB and
scB . In the general case the problem in this form does not seem to be

an easy one. However, fo. spheres and cylinders, results for RhB and Sce

wvithout quadratures are readily obtainable.

NE N e et SRR b0 & L b
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Spheres
= = ' = ' =
In the case of a sphere BuB 0, b08 8ag and xa W 0
leads to the acceptable solution
RaB = PuB s Sas =0 . (66)
A more general solution is
R g = 1+ C)PuBA R saB =C QaB ' 4(67)
and correspondiigly
* B .
xa = iv(@a +8¢C Xu) , W = 1i8vCW (68)

where C is any 0(1) constant. The arbitrariness involved is simply a

manifestation of the well known degree of arbitrariness involved in the form

of the shell equations.

Circular Cylinders

In this case put

X! = b X - X% " W' =0, and obtain
X8 = R TR |
' = bi(Qp +eg z-ubg W - Qg "asz +ub g W
%‘x&,s ¥ xé, )= _(bY QBY + b; ay) - Q 8 =
The result for §;8 is
Sap ™ 708 Gy top Q) - (69)
Further o =8 (b6 X -%) =0 ;
a Vy Y
z' = %-ensbz X g~2" %{Bay *'%tay)xy’a -z %
- ey, -l z
The result for E;B is 3
. —aé = %(b; FYB + "Z F‘ra) '.':21 18 Bog A $75' 70
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* *
and for Xu and W there is

3 Y *
X = 4v(-¥ ~8X +28Db X)) , Ww=20 .
a a a a Yy

These results can be generalized as in the case of the sphere.

General Cylinders.

For cylinders one has the formulas

Y 1oy Y Y6 I Y
ba,8 =% Pafe bog® P s Dag?f
The choice
X' = b'X
a a’y
1 Y
W' = 20W- — X
P wo P,y
leads to the results
% Y Y
xa = iv(—w’a + 28 bq X")
% 1 Y
= 2 - —
W iBv(2p W -~ p’YX)
suB Z(ba QIB +~b8 Qwu)
.= 207+ 207 . +bYP )-2468 . 8%, +2 W
aB aB 20 8 B "ya 2 af 2 ) ,aB
1 Y 1,1 Y Y
+ 2 + 2 W += YTH - X - 48 b X
D.GW,B P.8",a " p bag P Y u(sv,v 108 B Pag g

Tne last term in the expression for ﬁ; is apparently O0(Bu) which

B

would violate the order-of-magnitude requirements on E;B in case Bu 1is large

(assurming such a possibility). A detailed investigation proves that

Bp y xY =0(1) in any case. The analysis is too lengthy to give here, but
’

a brief statement of the facts may be in order. When By is large the

characteristic equation is approximately (assuming p y = 0(1) )
. ?

2B(p¢'y) 'y - 1f9xx =0

in cartesian coordinates with x in the axial direction. Evidently there
are two length scales involved since Jﬁ’ << }D from (74). To be consistent
' X 'y

here the L 4in ¥ should be the shorter (circumferential) "wavelength" so

(71)

(72)

(73)

(74)
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that no differentiation increases the order of magnitude of ¢>. One must
use (47) and (48) to calculate X“, W and from these calculate EQB . When /7
is scaled to make 6&8 = 0(1) it turns out that Bu¢ = 0(l) and

B Xy = 0(1). 1In the unlikely event that o y is large 50 becomes smaller
9

to compensate; in any case EaB = 0(1) .
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Concluding Remarks

The linear equations of thin shell theery have been reducediin complex
form to a true fourth ovrder system (with no conjugation operation) without
approximation of the equilibriﬁm or compatibility equation, but at thek'
expense of introducing an auxiliary system of equations for certain allow-
able errbr terms in the constitutive relations. The fourth order system
has been reduced to a single fourth order equation in certain cases. Other
than this no serious atteﬁpt has been madc'at further simplification of the
equations (which might be made in genefal or in specific cases).by dropping
small terms. However, such approximations are usually casier to justify
in a single equation than in a system of equations. Extensions of the
results to include the case of distributed loads remains to be worked out.

A characteristic equation for the membrane-inextensional bending
theories (which are combined in the complex‘formulation) is obtained by
omitting all but the yu terms in L(P) = 0 or i‘;ﬁ =0, In this con-
nection the author encountered a paradoxical situation. A characteristic
equation'for the membrane-inextensional bending (¥.I.B.) theory in terms of 2
(the Weingarten equation) can be obtained for any shape of middle surface.

A full account of the theory is to be found in Vekua's book [15]. On the other
hand, a characteristic equation (for the M.I.B,theory) in terms of P is diffi-
cult if not impossible to obtain except in those cases treated in this ﬁaper.
One might think that a general characteristic equation for the bending theory

in terms of z would be easy to obtain. It turns out that the relation

QuB = - 1 5;8 can be replaced by equivalent equations in terms\of rotations.

°c and .z only. In the M.I.B. case (QaB = O)QQ is easily eliminated to

obtain the Weingarten equation. The author has been unable to perform the

g .

et -
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elimination for the bending theory in any case except the circular
cylinder, (assuming that higher than fourth derivatives of 2z are ruled
out). An important unanswered question is the fcllowing: Can the system

(19) be redued to a single fourth order equation in general, and if not,

can it be so reduced in cases other than those already found?
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